Qianru Sun 孙倩茹

Singapore Management University

Learning to learn from small data

Source: Movie Scene from Pirates of the Caribbean

What to learn? e.g. image classification

L. Fei-Fei and O. Russakovsky, Analysis of Large-Scale Visual Recognition, Bay Area Vision Meeting, October, 2013 L. Fei-Fei, ImageNet: crowdsourcing, benchmarking & other cool things, CMU VASC Seminar, March, 2010

What to learn? e.g. image classification

Sea lion

L. Fei-Fei and O. Russakovsky, Analysis of Large-Scale Visual Recognition, Bay Area Vision Meeting, October, 2013 L. Fei-Fei, ImageNet: crowdsourcing, benchmarking & other cool things, CMU VASC Seminar, March, 2010

What to learn? e.g. image classification

Traffic light

Strawberry

Backpack

Multiple classes

Sea lion

Bathing cap

1

Matchstick

Racket

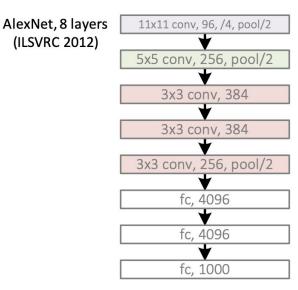
Flute

L. Fei-Fei and O. Russakovsky, Analysis of Large-Scale Visual Recognition, Bay Area Vision Meeting, October, 2013 L. Fei-Fei, ImageNet: crowdsourcing, benchmarking & other cool things, CMU VASC Seminar, March, 2010

What to learn? benchmark: ImageNet

More than 20K object categories More than 14 million images

How to learn? <u>Deep</u> Neural Networks



ILSVRC 2012:

ImageNet Large Scale Visual Recognition Competition in 2012 (Ended)

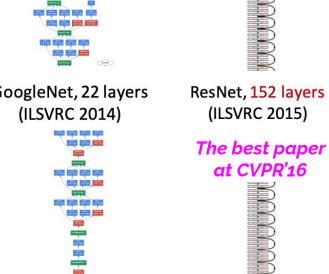
End-to-end training. Easy to chopped up, modified, retrained.

How to learn? Deeper Neural Networks

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2
¥
3x3 conv, 384
¥
3x3 conv, 384
3x3 conv, 256, pool/2
fc, 4096
€, 4050
fc, 4096
fc, 1000
Alau Mat Olauana
AlexNet, 8 layers
(11 (1) (1) (1) (1) (1) (1)
(ILSVRC 2012)

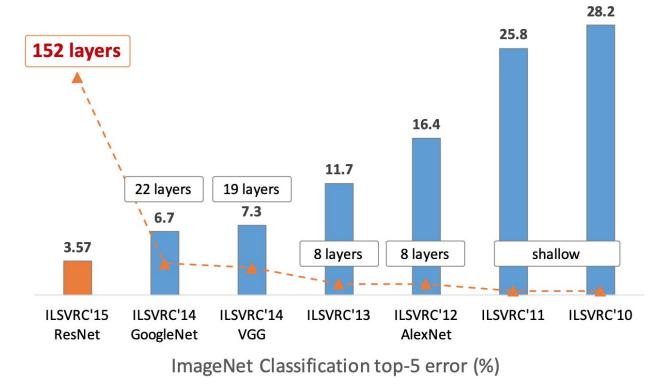
3x3 conv, 64	
3x3 conv, 64, pool/2	
3x3 conv, 128	
3x3 conv, 128, pool/2	
3x3 conv, 256	
3x3 conv, 256	
3x3 conv, 256	
3x3 conv, 256, pool/2	
3x3 conv, 512	
3x3 conv. 512	
VGG 19 Javars	Go
VGG, 19 layers	Go
VGG, 19 layers (ILSVRC 2014)	Go
(ILSVRC 2014)	Go
(ILSVRC 2014)	Go
(ILSVRC 2014)	Go
(ILSVRC 2014)	Go
(ILSVRC 2014) 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512, pool/2 fc, 4096	Go
(ILSVRC 2014)	Go
(ILSVRC 2014) 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512, pool/2 fc, 4096 fc, 4096	Go
(ILSVRC 2014)	Go



K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks. ECC 2016. (survey)

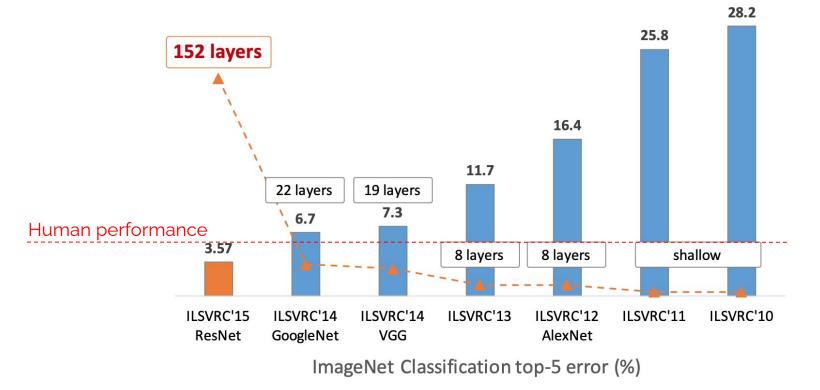
Learning to learn - Qianru

How they perform? e.g. on ImageNet



K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks. ECCV 2016. (survey)

Even better than human!



K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks. ECCV 2016. (survey)

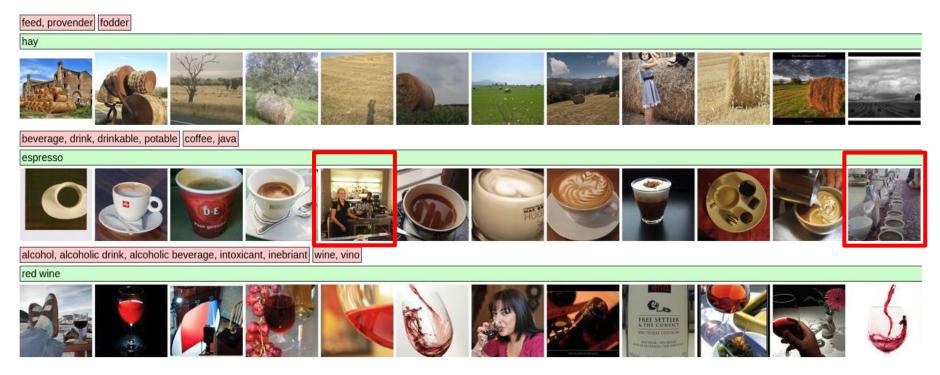
Even better than human!

Learn from scratch! Learn by self-playing! Learn with ResNet!

Learning to learn from small data

Why from small data? in the era of big data

Big data is expensive!



Big data is expensive! e.g. to label the ImageNet

of classes: **40,000**

of images per class: 10,000

of people needed to verify: 3

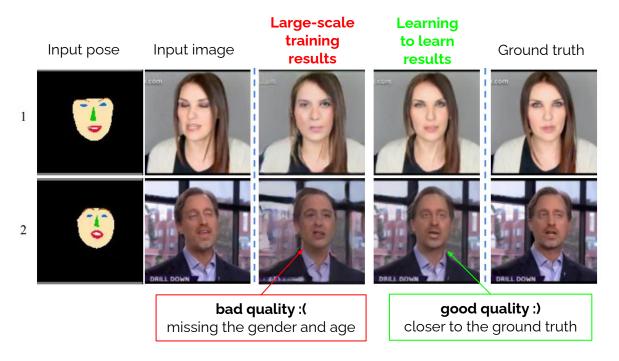
Speed of verifying: 2 images/second

 $40,000 \cdot 10,000 \cdot 3/2 = 600,000,000 \text{ sec}$ 19 years

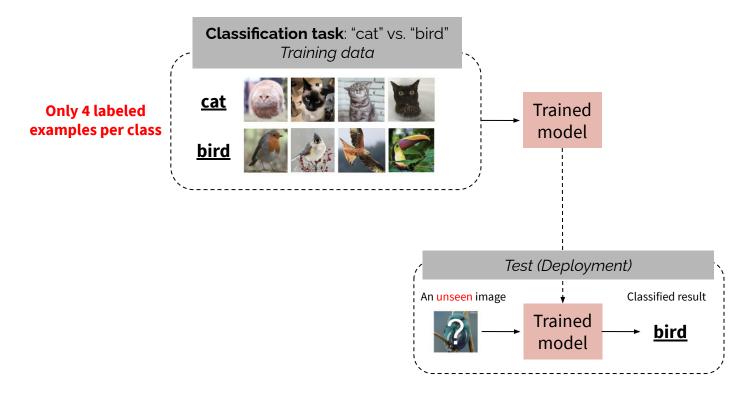
No graduate student would like to do this 19 yrs project !

L. Fei-Fei, ImageNet: crowdsourcing, benchmarking & other cool things, CMU VASC Seminar, March, 2010.

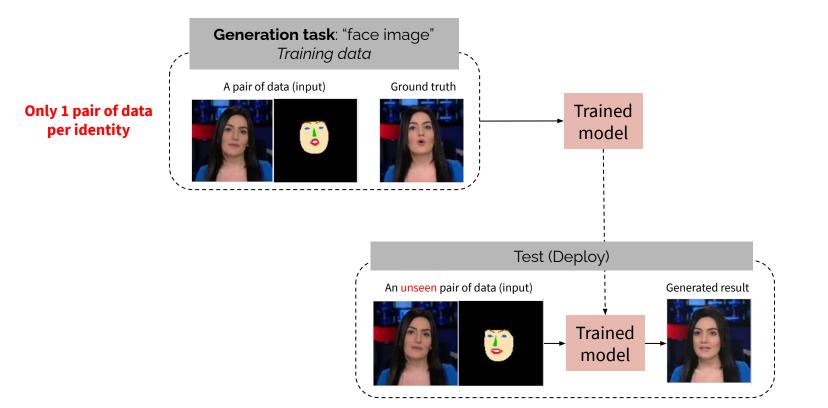
Big data is not "personalized"! e.g. person image generation



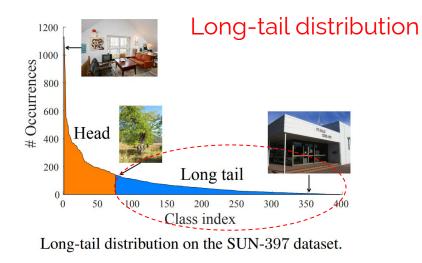
Small data is cheap! e.g. classification



Small data is cheap! e.g. generation

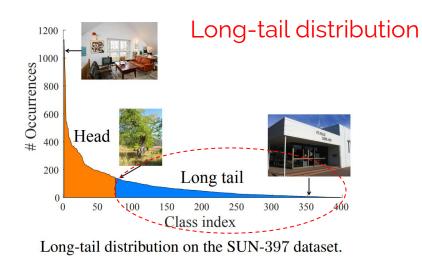


Long-tail distribution, expensive images, expensive annotation ...



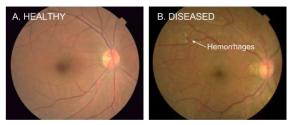
Y. Wang, D. Ramanan and M. Hebert. Learning to Model the Tail. NIPS 2017.

Long-tail distribution, expensive images, expensive annotation ...



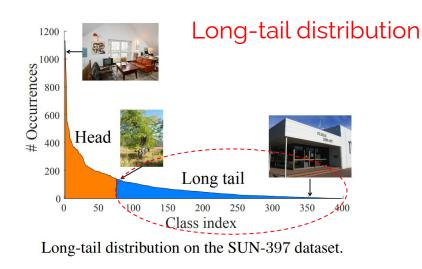
Y. Wang, D. Ramanan and M. Hebert. Learning to Model the Tail. NIPS 2017.

Detect Diabetic Retinopathy Rare images

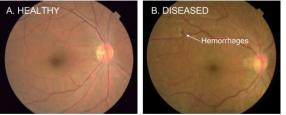


Diabetic Retinopathy, a diabetes complication that affects eyes. Source: https://ai.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html

Long-tail distribution, expensive images, expensive annotation ...



Y. Wang, D. Ramanan and M. Hebert. Learning to Model the Tail. NIPS 2017.



Diabetic Retinopathy, a diabetes complication that affects eyes. Source: https://ai.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html

Expensive annotation

Input Image

Semantic Segmentation

Long-tail distribution, expensive images, expensive annotation ...

The realistic example is often as follows ...

Small data is easy for human!

B. M. Lake, R. Salakhutdinov, and J.B. Tenenbaum. Human-level concept learning through probabilistic program induction. *Science*, 2015.
 E. G. Miller, N.E. Matsakis, and P.A. Viola. Learning from one example through shared densities on transformations. *CVPR*, 2000.
 B. M. Lake, R. Salakhutdinov, and J.B. Tenenbaum. Concept learning as motor program induction: A large-scale empirical study. *Annual Conference of the Cognitive Science Society*, 2012.

Easy for you to remember me by one glance...

Why? A conservative estimate of images a person has seen.

Let's assume a person sees a distinct image every 30 seconds.

By the time a person enters his/her 25 years old,

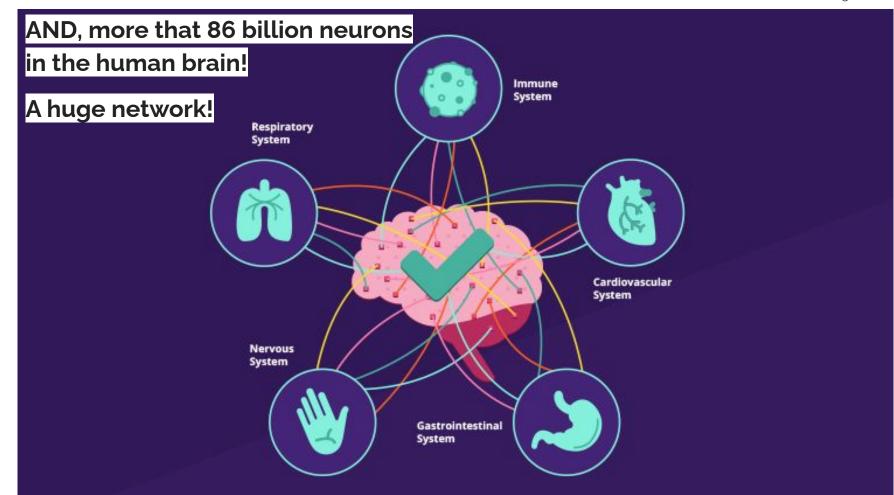
he/she has seen:

= 25 years * 365.24 days/year *16 hours/day * 60 minutes/hour * 2 images / minute

= 17, 531, 520 images

More than an ImageNet (14 million images)!

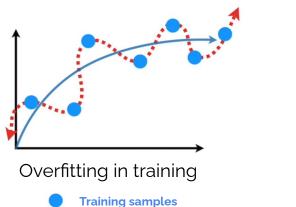
Learning to learn - Qianru

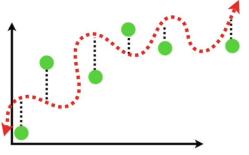


Small data is hard for machine!

Two main problems:

- Over-fitting becomes much harder to avoid.
- Outliers become much more dangerous.





Poor generalization in test

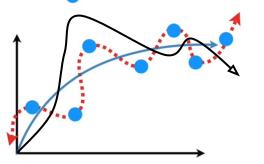
Test samples

Overfitted model (failure case)

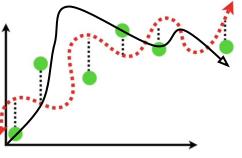
Small data is hard for machine!

Two main problems:

- Over-fitting becomes much harder to avoid.
- Outliers become much more dangerous.



Overfitting in training



Poor generalization in test

Test samples

 \rightarrow True distribution (target)

Overfitted model (failure case)

X Noises-effected model (failure case)

Can machine learn from humans?

Humans learn experiences from related tasks

"meta-learning" or "learning to learn"

(Machine Learning)

Meta-Learning (Learning to learn)

zdnet.com

My recent works - Learning to learn for different capabilities in computer vision tasks

Learning to **transfer** "memory" --- "experiences from other large-scale tasks"

Learning to **extract** "data" --- "images potentially useful for future training"

Learning to combine "models" --- "trained network parameters"

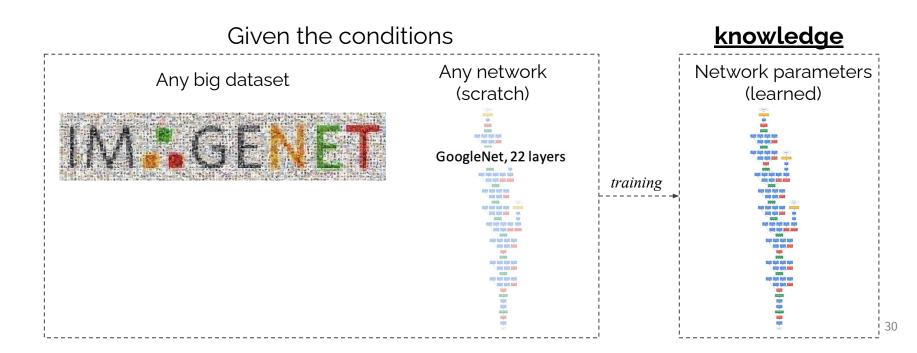
My recent works - Learning to learn for different capabilities in computer vision tasks

Learning to **transfer** "memory" --- "experiences from other large-scale tasks"

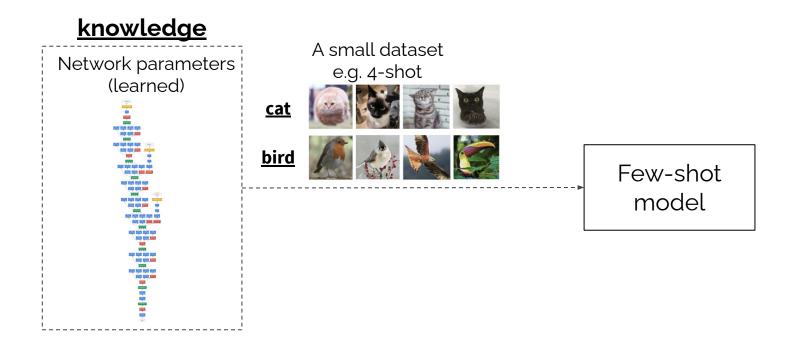
Learning to extract "data" --- "images potentially useful for future training"

Learning to combine "models" --- "trained network parameters"

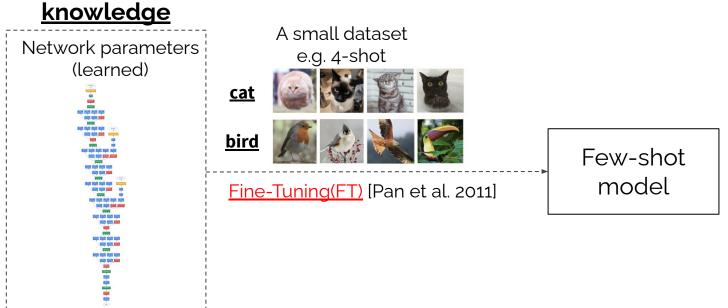
Given an existing model pre-trained on a large-scale task



The general memory of image patterns is already in the model

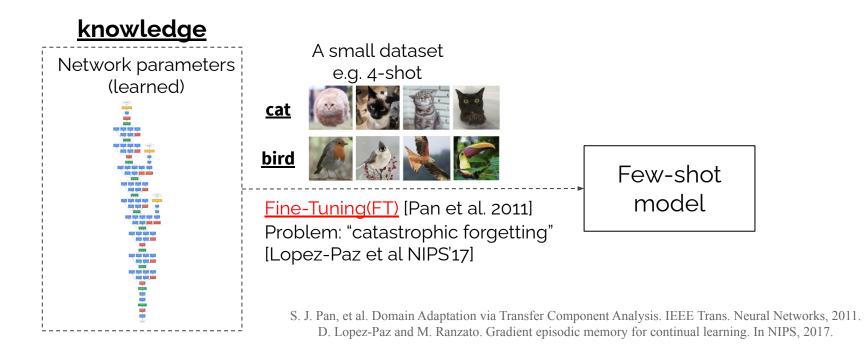


A traditional method is "Fine-Tuning"



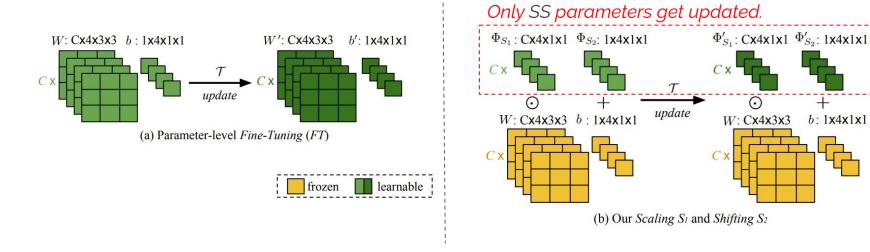
S. J. Pan, et al. Domain Adaptation via Transfer Component Analysis. IEEE Trans. Neural Networks, 2011.

A traditional method is "Fine-Tuning", while it is problematic!



33

Fine-Tuning [Pan et al. 2011] Problem: "catastrophic forgetting" <u>Meta-Transfer Learning</u> [Sun et al. CVPR'19] Scaling and shifting (*SS*) of frozen neurons



S. J. Pan, et al. Domain Adaptation via Transfer Component Analysis. IEEE Trans. Neural Networks, 2011. Q. Sun, et al. Meta Transfer Learning for Few-Shot Learning. CVPR 2019.

 Φ'_{S_1} : Cx4x1x1 Φ'_{S_2} : 1x4x1x1

unchanged

knowledge

b: 1x4x1x1

 \bigcirc

W: Cx4x3x3

 $C \mathbf{X}$

Learning to transfer "memory"

Meta-Transfer Learning [Sun et al. CVPR'19] Fine-Tuning [Pan et al. 2011] Scaling and shifting (SS) of frozen neurons Problem: "catastrophic forgetting" Only SS parameters get updated. Φ_{S_1} : Cx4x1x1 Φ_{S_2} : 1x4x1x1 $W: Cx4x3x3 \ b: 1x4x1x1$ W': Cx4x3x3 b': 1x4x1x1CX knowledge update knowledge update $W: Cx4x3x3 \ b: 1x4x1x1$ (a) Parameter-level Fine-Tuning (FT) CX knowledge learnable frozen (b) Our Scaling S1 and Shifting S2

> S. J. Pan, et al. Domain Adaptation via Transfer Component Analysis. IEEE Trans. Neural Networks, 2011. Q. Sun, et al. Meta Transfer Learning for Few-Shot Learning. CVPR 2019.

Meta-Transfer Learning [Sun et al. CVPR'19]

Results on two benchmarks: miniImageNet [Vinyals et al. NIPS'16]; FC100 [Oreshkin et al. NeurIPS'18]

	miniImageNet			FC100		
	1 (shot)	5	1	5	10	
update $[\Theta; \theta]$	45.3	64.6	38.4	52.6	58.6	
update θ	50.0	66.7	39.3	51.8	61.0	
$ \begin{array}{c} FT \ \theta \\ FT \ [\Theta 4; \theta] \\ FT \ [\Theta; \theta] \end{array} $	55.9	71.4	41.6	54.9	61.1	
	57.2	71.6	40.9	54.3	61.3	
	58.3	71.6	41.6	54.4	61.2	
$\frac{SS [\Theta 4; \theta]}{SS [\Theta; \theta] (\mathbf{Ours})}$	59.2	73.1	42.4	55.1	61.6	
	60.2	74.3	43.6	55.4	62.4	

Update[...]: Without "learning to learn"

Our improvements(minimum) over *Update[...]*: miniImageNet: 10.5%(1-shot) and 7.6%(5-shot); FC100: 4.3%(1-shot), 3.6%(5-shot) and 1.4%(10-shot). Ours performs better on lower-shot settings.

Q. Sun, et al. Meta Transfer Learning for Few-Shot Learning. CVPR 2019.

O. Vinyals, et al. Matching Networks for One Shot Learning. NIPS 2016.

B. N. Oreshkin, et al. TADAM: Task Dependent Adaptive Metric for Improved Few-Shot Learning. NeurIPS 2018.

Learning to **transfer** "memory" --- "experiences from other large-scale tasks"

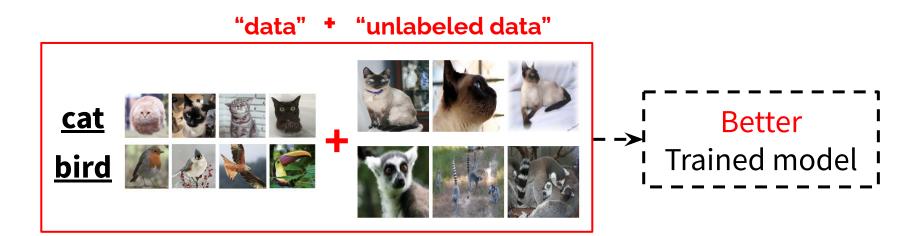
Learning to **extract** "data" --- "images potentially useful for future training"

Learning to combine "models" --- "trained network parameters"

Learning to **transfer** "memory" --- "experiences from other large-scale tasks"

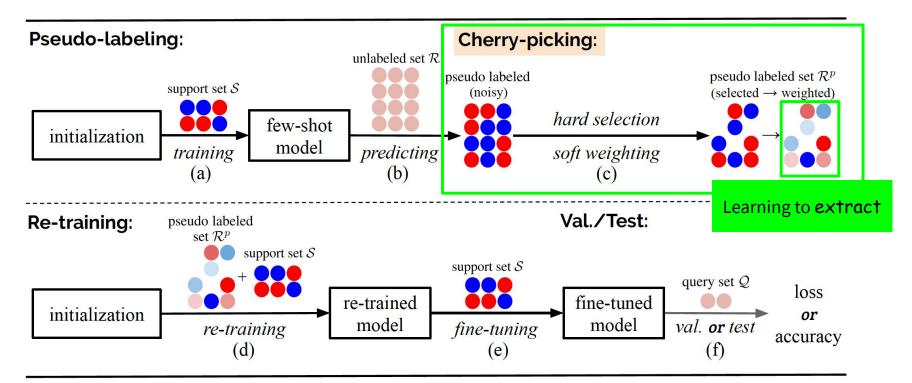
Learning to **extract** "data" --- "images potentially useful for future training"

Learning to combine "models" --- "trained network parameters"

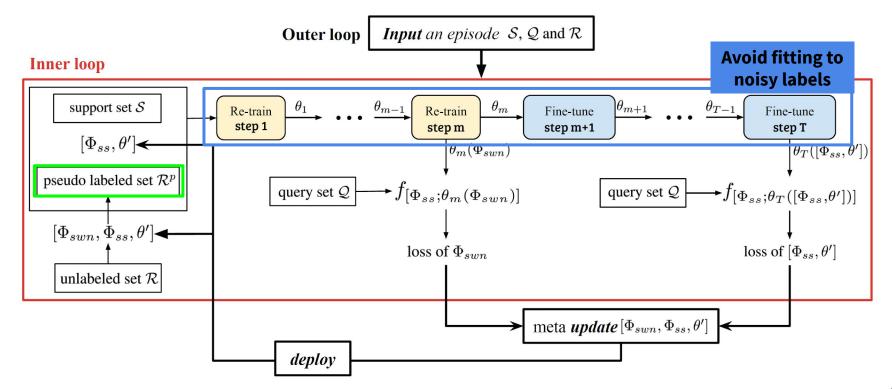


Semi-supervised learning (data is cheap but label is expensive)

Xinzhe Li, et al. Learning to self-train for semi-supervised few-shot classification. NeurIPS 2019.



Xinzhe Li, et al. Learning to self-train for semi-supervised few-shot classification. NeurIPS 2019.



Xinzhe Li, et al. Learning to self-train for semi-supervised few-shot classification. NeurIPS 2019.

		mini		tiered		miı	mini w/ \mathcal{D}		d w/⊅	${\mathcal D}$ for Distracting classes
		1(shot)	5	1	5	1	5	1	5	-
fully supervised (upper bound)		80.4	83.3	86.5	88.7	-	-	-	-	-
no meta	no selection hard recursive,hard	59.7 63.0 64.6	75.2 76.3 77.2	67.4 69.8 72.1	81.1 81.5 82.4	54.4 61.6 61.2	73.3 75.3 75.7	66.1 68.8 68.3	79.4 81.1 81.1	
meta	hard (Φ_{ss}, θ') soft hard,soft recursive,hard,soft mixing,hard,soft	64.1 62.8 65.0 70.1	76.9 + 5.5% 77.8 7 8.7 77.9	74.7 73.1 75.4 77.7 75.6	83.2 82.8 83.4 85.2 84.6	62.9 61.1 63.7 64.1 64.5	74.6 76.2 77.4	73.4 72.1 74.1 73.5 73.6	82.5 81.7 82.9 83.4 83.8	Our Ablation Study
Masked Soft <i>k</i> -Means <i>with</i> MTL TPN <i>with</i> MTL Masked Soft <i>k</i> -Means [24] TPN [13]		62.1 62.7 50.4 52.8	73.6 74.2 64.4 66.4	68.6 72.1 52.4 55.7	81.0 83.3 69.9 71.0	61.0 61.3 49.0 50.4	72.4 63.0	66.9 71.5 51.4 53.5	80.2 82.7 69.1 69.9	Comparable to Ours

Table 2: Classification accuracy (%) in ablative settings (middle blocks) and related SSFSC works

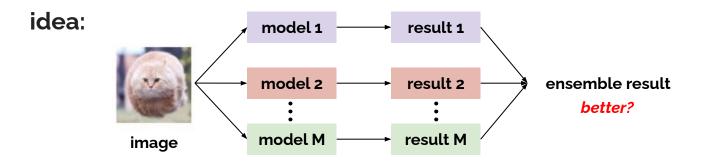
A significant improvement by using "learning to extract"!!!

Xinzhe Li, et al. Learning to self-train for semi-supervised few-shot classification. NeurIPS 2019. MTL: Qianru Sun, et al. Meta Transfer Learning for Few-Shot Learning. CVPR 2019.

Learning to **transfer** "memory" --- "experiences from other large-scale tasks"

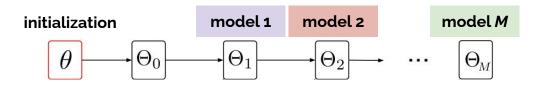
Learning to **extract** "data" --- "images potentially useful for future training"

Learning to combine "models" --- "trained network parameters"



Learning to customize models

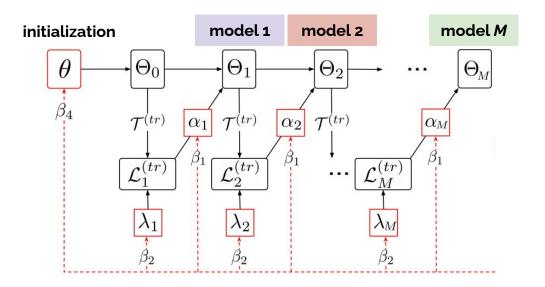
"Multiple models" == "models with different architectures, learning rates, data inputs, loss functions"



How to get?

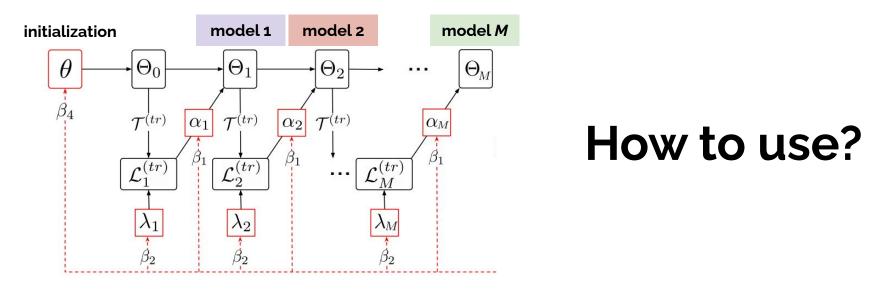
Learning to customize models

"Multiple models" == "models with different architectures, learning rates, data inputs, loss functions ..."



Learning to customize models

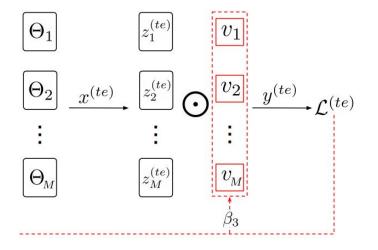
"Multiple models" == "models with different architectures, learning rates, data inputs, loss functions ..."



Learning to combine models

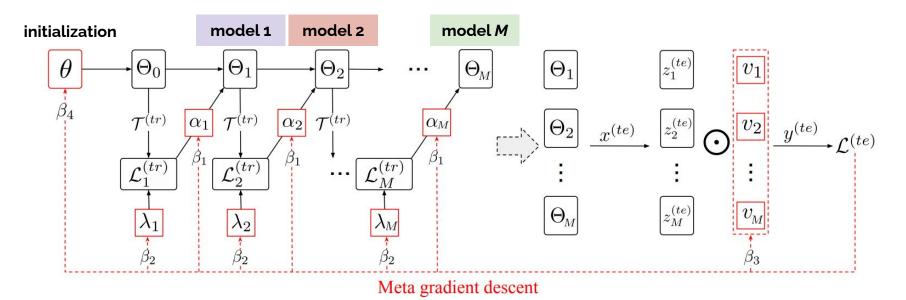
"Multiple models" == "models with different architectures, learning rates, data inputs, loss functions ..."

Weighted combination:



Learning to combine models

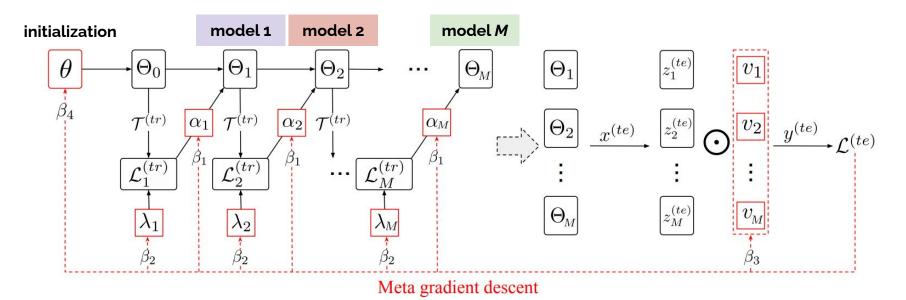
"Multiple models" == "models with different architectures, learning rates, data inputs, loss functions ..."



Yaoyao Liu, et al. An Ensemble of Epoch-wise Empirical Bayes for Few-Shot Learning. ECCV 2020.

Learning to combine models

"Multiple models" == "models with different architectures, learning rates, data inputs, loss functions ..."



Yaoyao Liu, et al. An Ensemble of Epoch-wise Empirical Bayes for Few-Shot Learning. ECCV 2020.

Learning to customize & combine

"Multiple models" == "models with different architectures, learning rates, data inputs, loss functions ..." **Results on miniImageNet**

	No.	Me	ta-lea	rned	Accu	uracy		
	110.	α	λ	v	1-shot	5-shot		<u>.</u>
	1			E	47.0 ± 1.8	62.0 ± 0.9		В
Baselir	1e: 2			S	48.0 ± 1.8	62.4 ± 0.9		
	3	\checkmark		S	49.7 ± 1.8	64.4 ± 0.9		lr
	4		\checkmark	S	49.0 ± 1.8	63.4 ± 0.9		П
	5	\checkmark	\checkmark	S	49.0 ± 1.8	65.0 ± 0.9		m
	6			L	49.7 ± 1.8	65.4 ± 0.9		
	7	\checkmark		L	52.9 ± 1.8	65.6 ± 0.9	and the second second	1
	8		\checkmark	L	48.6 ± 1.8	64.7 ± 0.9	1 Starten	
Ours:	LCC(Ours)	\checkmark	\checkmark	L	$\textbf{54.0} \pm 1.8$	$\textbf{65.8} \pm 0.9$	<u>Y</u>	b
	"oracle" v			0	52.4 ± 1.8	64.7 ± 0.9		L

 Table. Classification accuracy (%). Higher is better.

Baseline: using a **S**ingle model

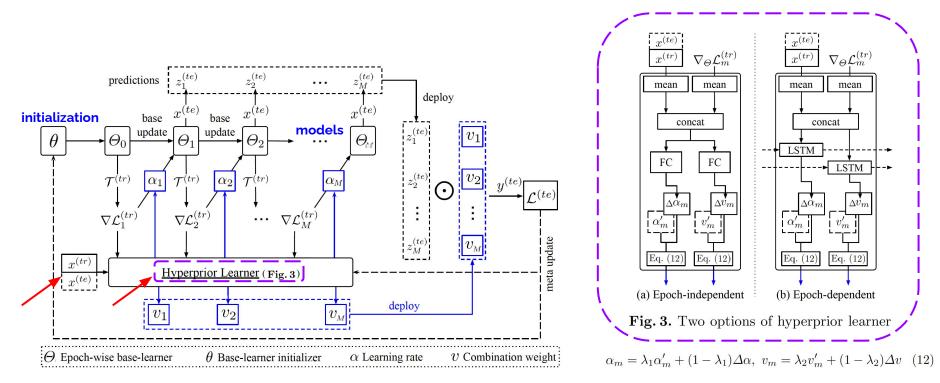
Improvements:

miniImageNet: 6.0%(1-shot) and 3.4%(5-shot)

LCC greatly surpasses baseline, and performs better in the lower-shot setting.

Ours: Yaoyao Liu, et al. An Ensemble of Epoch-wise Empirical Bayes for Few-Shot Learning. ECCV 2020. **Baseline:** Chelsea Finn, et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

An Ensemble of Epoch-wise Empirical Bayes



Yaoyao Liu, et al. An Ensemble of Epoch-wise Empirical Bayes for Few-Shot Learning. ECCV 2020.

An Ensemble of Epoch-wise Empirical Bayes (add-on contributions)

Three popular few-shot learning benchmarks

	No.		miniIm	ageNet	tieredIn	nageNet	FC100					
	NO.	Method	Hyperprior	Learning	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot		
2019 SO	TA: 1	MTL [70]	_	Ind.	63.4	80.1	69.1	84.2	43.7	60.1		
	2	$MTL+E^{3}BM$	\mathbf{FC}	Ind.	64.3	80.9	69.8	84.6	44.8	60.5		
	3	$MTL+E^3BM$	\mathbf{FC}	Tra.	64.7	80.7	69.7	84.9	44.7	60.6		
	4	$MTL+E^3BM$	LSTM	Ind.	64.3	81.0	70.0	85.0	45.0	60.4		
	5	$MTL+E^{3}BM$	LSTM	Tra.	64.5	81.1	70.2	85.3	45.1	60.6		
2020 SO	TA:6	SIB [25]		Tra.	70.0	79.2	72.9	82.8	45.2	55.9		
	7	$SIB+E^3BM$	\mathbf{FC}	Tra.	71.3	81.0	75.2	83.8	45.8	56.3		
	8	$SIB+E^3BM$	LSTM	Tra.	71.4	81.2	75.6	84.3	46.0	57.1		

E3BM: Yaoyao Liu, et al. An Ensemble of Epoch-wise Empirical Bayes for Few-Shot Learning. ECCV 2020.
 MTL: Qianru Sun, et al. Meta Transfer Learning for Few-Shot Learning. CVPR 2019.
 SIB: Shell Xu Hu, et al. Empirical Bayes Transductive Meta-Learning with Synthetic Gradients. ICLR 2020.

Learning to **transfer** "memory" --- "experiences from other large-scale tasks"

Learning to **extract** "data" --- "images potentially useful for future training"

Learning to combine "models" --- "trained network parameters"

Other capabilities?

Learning to **transfer** "memory" --- "experiences from other large-scale tasks"

Learning to extract "data" --- "images potentially useful for future training"

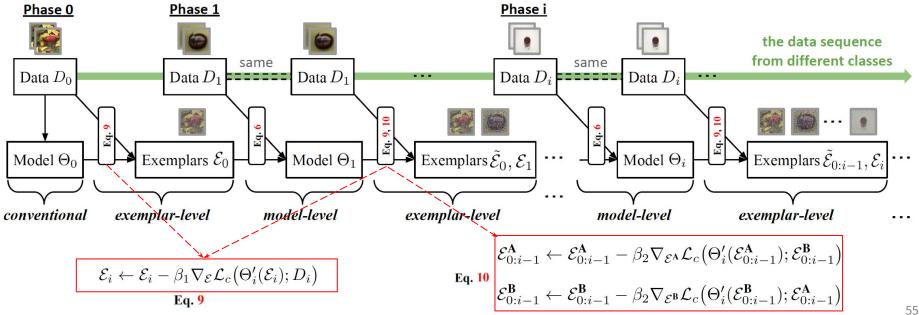
Learning to combine "models" --- "trained network parameters"

Other capabilities?

Learning to COMPRESS **the training data (for incremental learning)** "Mnemonics Training: Multi-Class Incremental Learning without Forgetting" <u>CVPR 2020 Oral</u>

Learning to compress data (Mnemonics)

Idea: Before discarding the training data of the i-th phase, compress them to a small representative \mathcal{E}_i



Yaoyao Liu, et al. Mnemonics Training: Multi-Class Incremental Learning without Forgetting. CVPR 2020 Oral Presentation.

Learning to **transfer** "memory" --- "experiences from other large-scale tasks"

Learning to **extract** "data" --- "images potentially useful for future training"

Learning to combine "models" --- "trained network parameters"

future work?

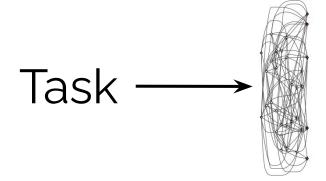
Learning to learn with small data. Qianru Sun. Dec 2019.

Architecture

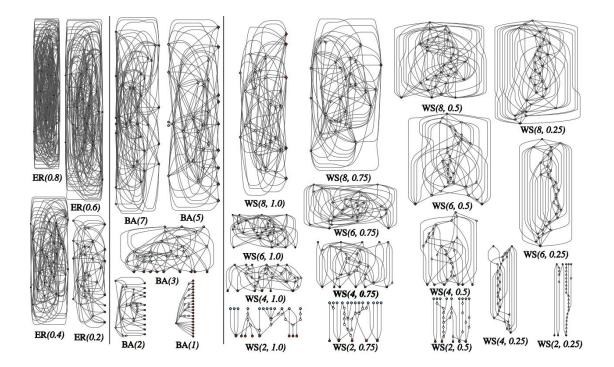
ResNet, 152 layers (ILSVRC 2015)

1.1.1.1.

Learning to design architectures

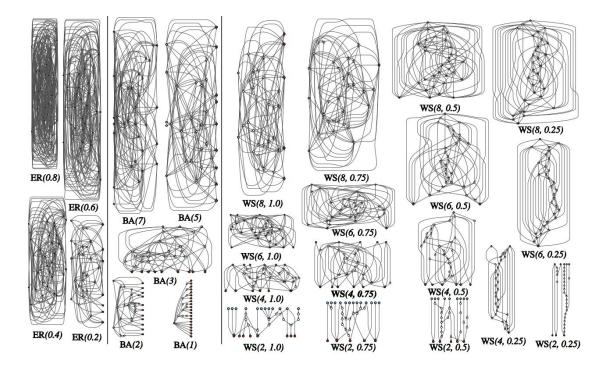


Learning to design architectures



Saining Xie, Alexander Kirillov, Ross Girshick, Kaiming He. Exploring Randomly Wired Neural Networks for Image Recognition. ICCV 2019.

Learning to design architectures



Which one performs the best, given a few-shot task?

Saining Xie, Alexander Kirillov, Ross Girshick, Kaiming He. Exploring Randomly Wired Neural Networks for Image Recognition. ICCV 2019.

